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We consider a dynamical system described by a set of random variables 
N~(t) and depending on a parameter R controlling its stability. If R < Rc 
the system is stable and the N~ have some symmetry properties in the 
statistical sense (i.e., with respect to time averaging). If R > Rc the system 
is unstable and the nonlinear dynamics of the N~ may lead to an asymptotic 
stationary state which does not possess the symmetries of the stable system. 
We show that the dynamics of symmetry breaking resembles a phase 
transition in the limit of many variables. 

KEY W O R D S  : Benard convect ion ; Volterra equat ions;  symmetry break- 
ing ; nonequi l ibr ium fluctuations. 

1, INTRODUCTION 

Many systems in physics and nonphysical sciences show the phenomenon of 
symmetry breaking: e.g., the appearance of organized patterns in nonequilib- 
rium fluids (Benard and Taylor cells, structures produced by oscillatory 
strains in a viscoelastic fluid (1,3,6~, and the laserlike phase transition predicted 
at thermal equilibrium in a many-body system described by the Dick Hamil- 
tonianD ~ These various systems usually depend on some external parameter A 
such that the dynamics exhibits a bifurcation at a critical value A = Ac. The 
equilibrium state at A < Ac possesses some symmetry property in the statistical 
sense (or is invariant under a definite group of transformations), this property 
being lost at A > ~c. However, the kinetics of the symmetry breaking is 
essentially unknown, and we propose to investigate it on a simple and 
solvable model: a set of p ordinary differential equations of the Lotka 
Volterra type. A salient feature we want to show is that in the limit of large p 
(i.e., of many degrees of  freedom) the system keeps its initial symmetry during 
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a very long time (compared to the inverse of the instability rate), staying 
quasistationary. Then, the kinetics changes abruptly, leading to the final 
asymmetric equilibrium. 

2. T H E  M O D E L  

We consider a system described by p variables N~(t) evolving in time 
according equations of the form 

.N~ = N~[y~- J=l ~ v~jNj] + s~ (1) 

where y~ and v~j are positive coefficients and the & are positive fluctuating 
source terms. 

The linear growth rates y~ depend on external constraints and may vary 
in time. When the y~ are negative and constant the amplitudes of the N~ are 
damped in the absence of source terms. These are able to establish a statistical 
equilibrium. The symmetry property we shall assign to our system is that this 
statistical equilibrium is invariant with respect to any permutation among the 
N~. This will be achieved by imposing the following conditions: 

(a) The y~ are i independent: 

y, = y (2a) 

(b) 

v~s = v(li - Jl) (2b) 

(c) The s~ themselves possess the symmetry property in the statistical 
sense: 

(s~) = s (3a) 

(s~sj) = function of [i - J l (3b) 

N,+p = N, (4) 

Now, we assume that, in a real experiment, the external parameters 
cause y to vary in time in the fashion shown on Fig. la. If At is small enough 
(At y << 1) the dynamics will be correctly approximated on long time scales by 
considering a function y(t) whose graph is a step function (see Fig. lb): 

y(t) = {Y-'  t < 0 
y, t > 0 (5) 

Before the onset of instability (t < 0) the amplitudes of the N~ are damped 
(in the absence of source terms), and any particular realization {N~} is short- 
lived. The statistical equilibrium is essentially determined by the dynamics of 
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(a) 

Fig. 1. Shape of y(t). 

(b) 

the s~, which ensures that at any time the symmetry property is preserved. 
At t = 0 a particular realization {~o} (among all possible fluctuating con- 
figurations {N~~ is present, which is not invariant with respect to the 
permutations of N~ (the symmetry property is only a statistical one). The 
amplitudes of the N~ ~ are no longer damped, and they grow for t > 0. The 
deterministic evolution would lead the system over some characteristic time t~ 
toward an asymptotic stationary state with broken symmetry. We shall show 
in Section 4 that if the amplitudes of the s~ are small enough, and if other 
specific conditions are satisfied, the system remains weakly fluctuating 
around the deterministic solution (starting from N~ ~ at time zero). Therefore, 
we first study the evolution of the deterministic model. 

3. THE DETERMIN IST IC  EVOLUTION 

The equation of motion of the deterministic model are 

29~ = yN, - N~ ~ v,,Nj (6a) 
1 

N,(t = 0) = N, ~ (6b) 

Equations (6a) and (6b) are of the Volterra type, and we have studied 
their properties in a preceding paper (2~ from a more general point of view 
(arbitrary v~j and/-dependent  growth rates). The particular features of our 
model (which must be fulfilled in view of the study of the dynamics of 
symmetry breaking) are (i) the growth rates are all equal, ~,~ = ~,; and (ii) the 
v~j are symmetric vj~ = v~j. 

It is known that property (ii) implies the existence of a Liapunov function 
H = ~ ~/N~ - �89 ~ j  v~jN~Nj, whose time derivative is positive definite at any 
time. (7~ It can be shown (3~ that this fact rules out any kind of cyclic or ergodic 
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behavior of the solution curve of Eqs. (6a) and (6b) in the space of the N~, 
and the trajectory tends asymptotically toward an equilibrium point. There 
exists a set of equilibrium points, which is obtained by setting the right-hand 
sides of Eqs. (6a) and (6b) equal to zero. It is defined by 

-Ni = 0 for i ~ {q} 

{q} being an arbitrary subset of the p modes, 

vij-Nj = ~' for i, j ~ {p - q} 
J 

the various equilibria being relevant only if their components N~ are all 
positive [it is indeed easily seen that, starting from positive initial conditions 
N~(to), the trajectory remains in the positive half-space of the N~ (see Ref. 2)]. 
Now, we have shown (2~ that the condition 

v~j > vi~ Vi, j (7) 

implies that all the above equilibria are unstable, except the one-mode 
equilibria. An equivalent statement of this property has been given by 
Haken r in the case of a simplified form of the v~j. Moreover, the existence of 
the above-mentioned H function ensures that this asymptotic state is actually 
attained whatever be the set of initial conditions. 

An additional obvious remark on the structure of Eqs. (6a) and (6b) is 
that a fiat initial distribution [Ndto) independent of i] remains flat during the 
evolution (this is due to the symmetry properties of the system). Therefore a 
solution with broken symmetry (i.e., a one-mode solution) appears because 
the random set of initial conditions is itself never exactly symmetric (with 
respect to the permutation of i indices) at the microscopic level. 

Since the essential morphological properties of Eqs. (6a) and (6b) are 
properties (i) and (ii) supplemented by conditions v,j > v~, (j  # i), we have 
been led to study a simpler model obeying the above constraints, but whose 
mathematical analysis is easier. This model is defined by considering constant 
coefficients of interaction except for the terms v,.  Therefore, we write 

v,j = v0[(1 +/3) - / 3  8,j] (8) 

Therefore, v,j has the shape represented in Fig. 2. Then, taking 7, -~ as unit 
time and making the change N, ~ volN~ [s~-+ s, = (vo/y)sd, we can write 
Eq. (6) as 

N , =  [ 1 - ( / 3 +  1)j=l ~ Nj+/3Ni]N, (9) 

t t t Introducing new variables U, = fo N~(t ) dr, we can formally integrate Eq. (9) 
a s  
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Fig. 2. The angular dependence of interaction kernel v([ 0~ - 0jl ) when/~,j = C re. 

f rom which we obtain that  

dUi ~v dUj  B% 
N---- 6 e -  , = Nj---- 5 e -  " = . . . .  f l - lg ( t )  (11) 

where g( t )  is function o f  time, but  not  depending on index i. Integrat ion o f  
Eqs. (11) with initial conditions U~(0) = 0 and g(0) = 0 gives 

1 - e -Be, 1 - e-BY, 
g( t )  - N~ o = N~ o - (12) 

f rom which 

N~(t) = fl-lN~~ - N~~ (13) 

Let us remark that  a consequence o f  Eq. (13) is that  if several occupat ion 
numbers  N~, Nj .... are initially equal, they remain equal at any time. 

The existence o f  funct ion g( t )  permits us to reduce the kinetics of  the set 
o f  the N~ to the kinetics o f  one variable. Indeed, we can eliminate the U~ with 
the help o f  Eqs. (12) and (13). Then Eq. (10) may  be rewritten in terms o f g ( t )  
a s  

1o 

~, = f l e~I -~  (1  - N , ~  u ( 1 4 )  
i = l  

with tL = (1 + fl)/fl. Equat ion (14) may  be integrated over time, giving 

fo ' ' (15) e t - 1 = 1 - ~  ( 1  - N~~ )" 

and the kinetic problem is then reduced to a study of  the function e t = F ( g ) .  
However,  tractable expressions for  the integral in Eq. (15) do not  exist and 
it is easier to work  on the differential equation (14). 

Since fl is positive and g(0) = 0, we see f rom Eq. (14) that  g(0) > 0 and 
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g(t)  remains positive until g( t )  reaches the value (Nx ~ 1, with Na ~ = sup{N~~ 
It  is easily seen that  g cannot  reach this value at finite time. The asymptot ic  
evolut ion is obta ined by replacing g by (NA~ - 1 in each factor  entering Eq. (14) 
except in (1 - Na~ We obtain  in this way 

- ~-~ao) ~(1 - N~~ (16) 

Putt ing cA = 1 - Na~ the integrat ion of  Eq. (16) yields 

es  N a ~  1 - - - ~ a o ] e  
iCh  

Using Eq. (13), we conclude that  N , ~  --+ 0, Na ~ 1 when t -+  oo. Therefore,  
we verify the general result, which was stated above  in the case of  arbi t rary  
(symmetric)  v~j that  the asymptot ic  evolut ion leads to the survival of  only one 
species. 

In  order  to obta in  more  informat ion  on the overall evolution we shall 
first consider the simple case where the initial distr ibution is flat [N,(to) = no]. 
Equa t ion  (14) thus reduces to 

~, = [3et(1 - n o g )  vu (17) 

and its solution is 

1 - n o g  = [1 + (ptz - 1)[3no(e t - 1)] -1/(pu-l~ (18) 

f rom which 

N,( t )  = N ( t )  = N~ 
1 + ( p t z -  1)fino(e t -  1) (19) 

A sketch of  the curve g( t )  is given in Fig. 3, where one sees that,  af ter  a linear 
stage o f  exponential  g rowth  [g(t), ,~ fl(e t -  1)], during a t ime interval 

1.110 4 g 

t 
1200 szc 

Fig. 3. The evolution of g(t) in the case of uniform initial spectrum N~(0) = 10 -3, 
p = 100. 



Simple Kinetic Model  of Symmetry Breaking 39 

t~ , ,  ~ l o g ( I / p i a n o )  we enter the nonlinear regime where the growth is much 
slower, 1 - n o g ( p l z f l n o e t )  - 1/p, (for large p). The evolution of N ( t )  is repre- 
sented in Fig. 4, the two curves corresponding respectively to the case where 
the initial value no is (a) smaller or (b) greater than the saturation value 
1/ f l (p t~  - 1) [we shall concentrate on case (a) in the following]. 

We want now to study the kinetics of  many modes (p large), with arbi- 
trary initial distributions. It is helpful to consider the particular case where 
the initial spectrum is uniform, except for the ~th mode, whose occupation 
number is larger (Ni ~ = n ~ Na ~ = n~, n~ > no). The corresponding equation 
for g is 

~, = tier(1 - nog)P~(1 - n ~ g )  ~ (20) 

The form of Eq. (20) suggests, in the limit of large p, that the kinetics is con- 
trolled in a first stage by the factor (1 - n o g )  p", as long as (1 - n a g ) "  is not 
too small. Later we enter the asymptotic stage, during which g ( t )  obeys the 
asymptotic equation (16) in the case N~ ~ a = no. We can give an evaluation of 
the first stage by considering the logarithmic derivative of Eq. (20), namely 

- =  1 -/zg( n~ + pno I (21) 
g 1 - n a g  1 - h o g ]  

The first stage will be defined as the time interval during which the non term is 
small compared to the no term in Eq. (21), and an order of magnitude of the 
duration of this stage is obtained by writing 

nA .,~ p n o  (22a) 
1 - n ~ g ( t R )  1 - n o g ( t n )  

N(t ) I 

I 

No V- 
I 

| 

Fig. 4. The two kinds of evolution of N~(t) in the case 
of uniform initial spectrum: (top) N~(0)< 1/p~f l ;  
(bottom) N~(0) > 1/plzfl. 

N 

I 
Pe~ 

z 
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and by assuming that g(tR) is still given by expression (18), i.e., according to 
the "homogeneous kinetics." Then, tR is given by 

p t z f l n o e t ~  (1 -nA]n~  ( 1 - n ~ ) - ( p . )  (22b) 

(for large p). 

In the two limiting cases no/nA = 1 - r /and no/na = ~/[where (pt z)- ~ << 
<< ~7 << 1], one obtains, respectively, 

no/na = 1 - ~1, t~ ~ plz log(l/r/) (22c) 

no/na = 7, tR "~ ptz~7 (22d) 

The two stages of the kinetics of  g(t)  are pictured in Fig. 5. 
In the limit of large p, g( t)  first grows exponentially, then for t > tNL we 

have a quasistationary stage where the evolution is not qualitatively different 
from that defined by solution (18). During the same time interval No(t) and 
Na(t) grow monotonically, very soon reaching the homogeneous saturation 
level (Pt~fi)-~, while Na(t) is still slowly growing [according to expression (13) 
and taking account of  the growth of  g for t < tR]. For time t of the order of 
tn the (1 - nag) term becomes important in Eq. (20); the g(t)  curve departs 
from the homogeneous curve and tends to approach its asymptotic limit 
g(oo) = 1/na (see Fig. 4). After a transient time At the kinetics obeys the 
asymptotic equation (16). We want to show, through a short (but rough) 
argument, that At/tR -+ 0 in the limit of large p. A majoration of At may be 
obtained in the following way. Let us put Ea = 1 - nag(tR). We shall evaluate 
the time tr + At at which e appreciably deviates from its initial value (say 

2.10 4 g 

...................'"'"'""' 

. . . . .  2 5 0  s~c 

Fig. 5. Evolution ofg(t) in the case of 1000 equal initial values lNo(0) = 10 -s] and one 
different one [NI(0) = 10-~l; the dotted curve represents the evolution of g in the case 
of uniform initial spectrum [No(0) = 10-81. 
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10-3 
No 

[o] 

[1] J 

5 10-2 
N1 

t 
1200 see 

Fig. 6. The evolution of No(t) and N~(t) for No(O)/Nz(t) = 1 -- % p = 100, -q = 10 -2. 

ea--+Ea' = ca/10) when one assumes that  e(t) evolves according to the 
slowest kinetics, namely the asymptot ic  one. We obtain, using Eq. (16), 

e at - 1 = (ea')- l /~ _- (ea)- l /e  (1 - no_] -P"e_t~ 
n~ \ na] 

According to Eq. (22b), e-t ,(1 - no/ha) -p" ~ ptzflno, and we have 

(,,)-.B _ ( , , ) -  lIB 
e ~t - 1 • e ~t z (ptzfino) (23) 

nh 

with ca z (1/p)(n~/no - 1). 

Therefore, we conclude that  At < log p for large p. Using the above 
evaluat ion for  tR, At/ tR < ( l o g p ) / p  for p -+  ~ .  Since the decay rate o f  No( t )  
in the asymptot ic  stage is of  the order o f  unity [cf. Eq. (16)], we conclude that  
the selection o f  the ~ mode in the vicinity of  t = tR takes a vanishingly small 
time (compared to the overall time t~ characterizing the kinetics). This 
behavior  recalls a phase transition. Numerical  calculations on Eq. (20) confirm 
the above conclusions. We show in Figs. 6 and 7 the evolution o f  No( t )  and 
Na( t )  in the two limiting cases no/na = 1 - ~ and no/na = ~1. 

10-3 NO - 10-1 

[0] N1 t 

[1] 

[ 
250 s e c  

Fig. 7. The evolution of No(t) and Nl(t)  for No(O)/Nz(O) = "q, p = 1000, -q = 10 -1. 
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Let us finally consider the general case where the initial spectrum 

n~ = N~(0) is characterized by its average value N~(0) = no [n~(0) = no + 3nil 
and its mean square deviation ~r 2 = ( l /p )  ]~ (3ndno) 2 [later we shall consider 
an average over a statistical ensemble of  independent  random variables N~(0)] 
and by the data  of  na = sup{N~(0)}. Assuming a relatively small dispersion, 
we obtain the following expression for #/g [after using a first-order expansion 
of  the (1 - N~~ factors (i # h) in terms of  ~n~g/(1 - n o g ) ] :  

g 1 - / z g I 1  1 [ p n 0 +  g ( '~"  '~] ~ nA 

We see that  the evolution is quas i - "homogeneous"  ifpcr2no2g/(1 - n o g )  2 < 
pno. I f  na << no (which will usually be the case for statistically independent  
N~~ this condit ion reduces to n o g <  1/~ 2. Taking account  of  a dispersion of  
initial values N~(0) a round  no will noticeably modify the kinetics only if nog 
reaches the value 1/~ 2 before the value 1/na, that  is, if  1/nocr 2 < 1/nA. 

Finally, we say a few words on the more general problem where the 
interaction kernel v u actually depends on [i - j ] .  

We shall consider, as an example, the case where the v u take the form 

where 

v~j= 1 + p u - / 3 , - S  u 

(5 + cos 0~j)2(1 - cos 0~j) 2 
/3u = (5 + cos 0u)3 - (27/4)(1 + cos 0u) 

(5 - cos 0u)2(1 + cos Ois) 2 
+ (5 + cos 0u) 3 - (27/4)(1 - cos 0u) (25) 

where 0 u = 0 4 -  0j. Here 0~ is a characteristic angle associated with ith 
populations.  This example comes f rom the hydrodynamics  of  Benard con- 
vection, and the above v u are the interaction coefficients between roll struc- 
tures along directions 0, and 0;. (s~ We comment  on this question in our  
conclusion. 

A simple analysis of  the kinetics is no longer available, and the detailed 
form of  the funct ion v(]i - Jl)  plays a role. The main features of  the kinetics 
remain the same as in the above simplified model,  and, in particular, nu- 
merical integration shows (see Fig. 8) the tendency, for  large p, to a three-step 
evolution: (i) the linear growth of  the initial spectrum, (ii) the quasisaturat ion 
of  the N~ during a time roughly propor t ional  to p, (iii) a sudden catastrophe 
where all the modes but  one disappear. 

However,  a new feature is now possible: the selected mode  is not  always 
the one whose initial occupat ion number  is maximum. Taking account  of  the 
monoton ic  decrease of  v(] 0~ - 0jl ) (excepting the hole at the origin), we may 
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1 Ni 

.~,  

/ 
t 

100 SEC 

Fig. 8. Evolution of 20 species obeying Eq. (12) with the true Newell-Whitehead kernel 
(only two species evolutions are represented). The initial values are N,(0)= 
exp [ - ( i -  1)2/1000] x 10 -4. 

expect that, starting from an initial distribution with many modes around 
some value 0o, plus one mode at 01 well separated from 00 with smaller 
occupation number N1 (see Fig. 9), we obtain the selection of N1 through 
nonlinear competition. Indeed, the growth of the isolated mode is less 
impeded by its interactions with the other modes than is the growth of any 
mode inside the main packet with stronger mode-mode interactions inside 
the packet [v([0~ - 0jl ) at small angles is large]. Numerical integration of 
Eq. (9) confirms the existence of this phenomenon (see Fig. 10). 

We add the following general comment. The discontinuity of the 
Newell-Whitehead interaction kernel v~ at i = j results in v~ < v~j V(i, j )  and 
therefore ensures that only one-mode equilibria are stable. One can study a 
continuous version of Eqs. (6a) and (6b), namely an integral equation of the 
form 

N(O, t ) I f  a(o - O')N(O', t)dO' t ~pN(O, t ) :  

for suitable analytic forms of the kernel a(] 0]). It can be shown that if a(I 0]) 
is a monotonic decreasing function of 0, one obtains, starting from an 
arbitrary initial angular distribution N(O, 0), an asymptotic isotropization of 
the distribution. 

Fig. 9. Qualitative shape of an initial spec- 
trum leading to inversion phenomena. 

N~(O) 

,It] 
Oo 0, 
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F i g .  10. N u m e r i c a l  s i m u l a t i o n  o f  t h e  i n v e r s i o n  p h e n o m e n o n .  T h e  i n i t i a l  v a l u e s  o f  t h e  

s e v e n  m o d e s  a r e  10 - 4  , 9 .5  x 10 -~,  8 .5  x 10 - 5  , 3 x 10 - 5  , 7 x 10 - 5  , 2 x 10 -5 ,  

5 x 10 -~.  

4. THE EFFECT OF THE FLUCTUATIONS 

4.1. General Considerations 

In the preceding section, we have described the evolution of inhomo- 
geneous initial conditions, i.e., of an asymmetric initial state of the system 
(with respect to permutations of the N~). We showed the difficult merging of 
an initially larger population competing with many others, but we have not 
really pictured a symmetry-breaking process. We could find the analog of the 
phase transition with broken symmetry of a physical system with many 
degrees of freedom (such as the superconductivity transition). In order to do 
that we must restore the fluctuations. Indeed, it is clear that in the thermal 
system the initial symmetry property is of a statistical nature (it does not exist 
at the microscopic, fluctuating level). At the time t = 0 when the physical 
parameter controlling the bifurcation reaches its critical value, the symmetric 
state is destabilized, while there appears a new stable, asymmetric state. 
However, the initial symmetry of the system demands that the symmetric 
solution still exists (but is unstable). Therefore, the establishment of the final 
state with broken symmetry may result from a competition between the 
destabilized unstable and a disymmetric solution, grown from a disymmetric 
fluctuating state which was present at t = 0. Such a phenomenon may be 
described easily in our simple model by introducing fluctuations. These have 
two effects: 

1. They introduce a statistical distribution of the N~(0) at initial critical 
time. Given the probability law of the N~(0), we can evaluate the relative 
weight of any particular realization of the {N~(0)} set in the final state. 
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2. They act in the kinetic equations through the presence of fluctuating 
source terms, which are eventually weakly perturbed by the growth of the 
instability (for instance, in the case of the coupling of the system with a 
larger thermal bath). Such terms tend to restore the initial symmetry of the 
system. 

Of course these two effects are usually not independent, but they may 
act on very different time scales, especially if the characteristic time of the 
instability is small enough. 

We shall first consider the effect of initial fluctuations by giving a 
reasonable probability law of these fluctuations: we assume the N~(0) = n~ to 
be statistically independent random variables distributed around an average 
value no according a Boltzmann-like probability law: 

f (nJno)  = e -",/"o (26) 

Therefore, the probability law of the largest population na is easily obtained 
and is given by 

~(X) = p(1 - e -X)p - l e  - x  ( X  = nx/no) (27) 

p being the number of species. In the limit of large p, ~(X) is sharply peaked 
around .~ = log p. Now it results from the remarks at the end of the preceding 
section that small enough fluctuations of the ni around no will negligibly 
modify the deterministic, two-component kinetics {no, na}. The condition of 
small fluctuations (~r 2 < ~a/no) is obviously satisfied with the above proba- 
bility law. Therefore, the time of catastrophe tR associated with a particular 
realization of the set ofn~ is still given by Eq. (22b), which gives in the limit of 
large p, tR ~ p(na/no)-1. Averaging over initial n~ and using the probability 
law (27), we find 

iR ~ p/log p (28) 

We now want to account for the effect of fluctuating source terms in the 
kinetic equations and show that, under definite conditions on the magnitude 
of these terms, the final state of the system will be only slightly fluctuating 
around the deterministic state. 

4,2. Qual i tat ive Evaluation of the Effect of the Fluctuating 
Source Terms 

Let us first come back to the physical picture of the evolution when the 
linear growth rate is steadily increased from negative values to positive ones 
(Fig. 2). As long as ~, < 0 (t < 0) we expect an adiabatic evolution toward a 
nontrivial equilibrium state slowly changing in time. This will happen if the 
variation of ~,(t) is sufficiently low (say, if 7-1 dT,/dt is much smaller than the 
correlation time of the s~) and if the s~ and y are related through the usual 
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fluctuation dissipation theorem. When t > 0 the instability starts, and the 
fluctuating source terms may drive, on the long run, our system far from 
the deterministic one-population solution. Remember also that, neglecting the 
possible effect of the instability on source terms, these terms tend to restore 
the initial symmetry. 

In order to study qualitatively the effect of the positive fluctuating source 
term s in Eq. (t), we use the former simplified form of the interaction 
coefficients 

ve j= (1  + 5 ) - f l S e j  

Therefore, we have to deal with 

Ne[(1 + 5) ~ Nj - fiN,] + s,, se = voSdy (29a) & we 

N~(0) = Ne ~ (29b) 

Let us now set 

N,(t) = IV,(t) + 8N,(t) (30) 

where/Ve(t) are the above solutions of the deterministic model starting from 
the initial conditions (29b). The 8N~(t) obeys the following equations: 

8 ] 9 e = & + S N e - 8 N ~ [ ( 1  + f l ) ~  ~Tj.-2f157el 
J = l  

- , Z 5) +5) ~ aNj- 5 aNe] 
J = l  

(31a) 

8N,(0) = 0 (31b) 

In the following we shall suppose, and verify later, that under convenient 
conditions the nonlinear term 8Nd(1 + fi) ~Y=I gNj - fl gNe] in Eq. (31a) 
plays a negligible role in the kinetics. Therefore, the evolution equations for 
the 8Ne reduce to 

a:*, __ s, + aN, - aUe (l + 5) ~V; - 2 5 N  - ~V, ~ (1 + 5) ~Uj 
j=l J=l 

8N,(0) = 0 

Now in Section 3, we have shown that for large p the evolution of 2~ 
proceeds in three steps: 

(a) An exponential growth for 0 < t < tm~ ~- log(1/ptzno), at the end of 
which N~ are of  the order of 1/plzfl. 
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(b) A quasistationary stage for tr~i~ < t < tR. 
(c) A final stage for t > tR, where all the Nt but one suddenly vanish. 
We shall give an estimation of the order of magnitude of ~N~(t) at the 

end of these three steps. 
It is easily seen that for t < tNL the 8N~ have an exponential growth and 

that they behave for t ~ tNL like 

f 
t N L  

3Nt ~ e~s~(tNL -- "0 dr 
~ 0  

If s is a characteristic value of the random positive functions s~, we 
obtain an order of magnitude 

8N~(tNL) ~ etna's ~ s/pl~no (32) 

It is also easily seen (taking into account the above renormalizations) that the 
order of magnitude of no is 

no ~ s~- /~  

(See Eq. (5) for the definitions of y and ),-.) 
As a consequence, the SN~ will be small at the end of the linear stage if 

Now let us consider the quasistationary evolution, where the Nt are all of 
the order of (p/z/3)-~. 

Equation (31a) reads 

~ ,  -~ st + ~N~ - 8N, 1 - b-~ ~ ~ ~N; 

st + 3Ntp(12--fl+/3) 

from which we obtain 

E 3 N t ~  E s t -  E 3 N j { 1  

; ~  3Nj (33) 

2/3) 
p(1 + p) (34) 

For large enough p the solutions of Eq. (34) always lead to a stationary limit 

It is also easily verified that, after time TR, the 8Nt will be of the order of 

8Nt(TR) ~ 1 ~ exp TR (36) 
p/z ~,- ip(1 + /3) 
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With TR of the order of p/z, we obtain 

~N~(T~) 1 ~, I 2/3 ] I '  exp(+2) - -  ---= exp ptt ,-~ - 
p~ r p(1 + ~5 p~ r 

Again, i f7 /7-  << 1, the ~N~ will remain small during the quasistatic evolution. 
Now let us consider what happens when the saturation is attained. We 

have in this stage 

N ~ = 0 ,  i # k; N~ = 1 

from which we deduce 

~]9~ = s~ + 3N, - 3N~[(1 +/3)] = s, - / 3  ~N, (i -r k) 

,N~ = s~ + 3 N ~ -  3Nk[(1 + / 3 ) -  2/3] - [(I + /3) ~ 3Nj] 

= ~ + / 3  *N~ - (1 + ~) ~ *N~ 

= ~ - 8N~ - ~ 8N~ 
j r  

It is easily seen that for i # k the 3N, tend to be such that 

jo~ ~Ni(t) = e-B~s~(t - .c) dr 

from which 

fo �9 ~ aNj = e -Be sj(t - ~) d'r 
j r  

with TR of the order of p/z, we obtain 

'N~(TR) ~ p/z--1 ~'-'=Y exp [p(12/3+ ~ P/~] "~ p/z--1 ~ exp(2)~,  (37) 

Again, if ~,/~,- << s the ~N~ will remain small during the quasistatic evolution. 
Now, let us consider what happens when saturation is attained. We have 

in this stage 

N , = 0 ,  i # k ;  N~=  1 (38) 

from which we obtain 

329, = s, - / 3  3N, (i # k) 

JT~ 

(39a) 

(39b) 
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For i g= k the 3N~ behave for large t like 

/ ,  eo 

8N~(t) ~ | e -B '&( t  - r ) d r  
do 

and 

8 N j ( t ) = j  e - ~ ' ~ s , ( t -  r)  d~ 
J ~ k  0 Y ~ k  

Inserting the above value of ~ j ,  k 8Ns in Eq. (39b), we obtain for large t 

fore fo ] 8Nk(t) = s~(t -- r)  -- e - e * ' ~  , j ( t  -- r -- r ' ) d r '  e -*  d r  
j ~s /r 

In order of magnitude, we obtain 

aN~ ~ s/5 (i # k); 

Obviously, the above evaluations are valid if 

ps/ f l  << 1 

y/y-  << 1 

49  

(40a) 

(40b) 

(41) 

(42) 

(43a) 

(43b) 

[in order to justify the neglect of the nonlinear terms 8N~ 8 N  s in Eqs. (31 a) and 
(31b)]. 

Condition (43a) has the meaning that, in the equilibrium state, the 
population of the dominant (or macroscopic) species must be much larger 
than the amplitudes of the other fluctuating species. 

5. C O N C L U D I N G  REMARKS 

We have given some insight into the kinetics of symmetry breaking in a 
simple dynamical system. Our model is certainly quite elementary, but it 
points out important features, such as the long relaxation time and the sudden 
transition in the limit of many variables. In the course of this paper we have 
alluded to the problem of Benard convection. We think that it is an example 
where these considerations find an interesting application, and suggest 
experimental investigations. Of course, intrinsic difficulties must be solved: 
essentially the problem of reducing the continuous hydrodynamic field to a 
set of discrete hydrodynamic modes (whose intensities would be our N0, and 
also of dealing with the slow diffusion of these modes in configuration space. 
This study will be the purpose of a subsequent paper. 
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